Transformers
Frontier Research Team at takara.ai introduces a pure Go implementation of attention mechanisms and transformer layers, featuring high performance and zero dependencies. The library offers efficient dot-product attention, multi-head attention support, and complete transformer layer implementation, making it ideal for edge computing and real-time processing.
A comprehensive guide detailing the implementation of Llama3 from scratch, covering model architecture, attention mechanisms, and optimization techniques like KV-Cache, with detailed code explanations and mathematical derivations.
An implementation guide for llama3 from scratch using JAX in 100 lines of code, covering model architecture, initialization, and training on Shakespeare dataset. The implementation focuses on pure functional programming principles with JAX's unique features like xla, jit, and vmap for optimized performance.
Transformers' extraordinary learning capabilities allow them to master skills through simple observation of related tasks, showcasing the potential of emergent behavior in AI. Recent studies demonstrate that transformer models can learn complex skills without explicit training, revealing profound implications for future AI development and understanding.