2025-02-19

GitHub - therealoliver/Deepdive-llama3-from-scratch: Achieve the llama3 inference step-by-step, grasp the core concepts, master the process derivation, implement the code.

A comprehensive guide detailing the implementation of Llama3 from scratch, covering model architecture, attention mechanisms, and optimization techniques like KV-Cache, with detailed code explanations and mathematical derivations.

Original archive.is archive.ph web.archive.org

Log in to get one-click access to archived versions of this article.

read comments on news aggregators:

Related articles

Writing an LLM from scratch, part 8 -- trainable self-attention

A detailed explanation of implementing trainable self-attention in LLMs, focusing on scaled dot product attention and matrix projections. The article breaks down how attention scores are calculated through query, key, and value matrices, demonstrating how five matrix multiplications can efficiently process token relationships.

GitHub - takara-ai/go-attention: A full attention mechanism and transformer in pure go.

Frontier Research Team at takara.ai introduces a pure Go implementation of attention mechanisms and transformer layers, featuring high performance and zero dependencies. The library offers efficient dot-product attention, multi-head attention support, and complete transformer layer implementation, making it ideal for edge computing and real-time processing.

GitHub - deepseek-ai/profile-data: Analyze computation-communication overlap in V3/R1.

Detailed profiling data from a training and inference framework is shared, highlighting communication-computation overlap strategies with PyTorch Profiler visualizations. The framework implements DualPipe with MoE layers across different configurations, including EP64/TP1 for training and EP32/TP1 for prefilling, demonstrating balanced routing and micro-batch optimization techniques.

RoboPianist: Dexterous Piano Playing with Deep Reinforcement Learning

Researchers developed a deep reinforcement learning system that trains anthropomorphic robot hands to play piano, using MuJoCo physics engine and MIDI files for simulation. The system achieves high performance by incorporating human fingering patterns and energy optimization, demonstrating significant improvements over baseline methods with an average F1 score of 0.79 across test pieces.

Implementing LLaMA3 in 100 Lines of Pure Jax

An implementation guide for llama3 from scratch using JAX in 100 lines of code, covering model architecture, initialization, and training on Shakespeare dataset. The implementation focuses on pure functional programming principles with JAX's unique features like xla, jit, and vmap for optimized performance.

Les enjeux de l’IA : mon interview sur France 2 et Firstpost.

Transformers' extraordinary learning capabilities allow them to master skills through simple observation of related tasks, showcasing the potential of emergent behavior in AI. Recent studies demonstrate that transformer models can learn complex skills without explicit training, revealing profound implications for future AI development and understanding.

Deep dive into LLMs like ChatGPT by Andrej Karpathy (TL;DR)

Andrej Karpathy's deep dive into LLMs covers the complete lifecycle from pretraining to post-training, explaining tokenization, neural network architectures, and fine-tuning processes. The comprehensive guide explores how LLMs process information, handle hallucinations, and utilize reinforcement learning to improve performance and reasoning capabilities.

Pulse AI Blog - Why LLMs Suck at OCR

Large Language Models (LLMs) face significant limitations in OCR tasks due to their probabilistic nature and inability to maintain precise visual information, particularly struggling with complex layouts and tables. LLMs' vision processing architecture leads to critical errors in data extraction, including financial and medical data corruption, while also being susceptible to prompt injection vulnerabilities.